dots bg

Data Science - Self Study

Course Instructor: Social Prachar

₹18000.00 ₹45000.00 60% OFF

dots bg

Course Overview

Schedule of Classes

Course Curriculum

1 Subject

Data Science - Self Study

80 Learning Materials

Python

Python - Introduction

Video
01:18:14

Installations

Video
01:01:06

Programming Example

Video
00:59:58

Basics of Python

Video
01:21:37

Basics Contd

Video
01:14:03

Basic Conted - 01

Video
01:21:58

Basics Cmplted

Video
01:08:46

Conditions - 01

Video
01:19:39

Conditions Contd

Video
01:03:14

Conditions Compltd

Video
00:24:54

Data Structures Intro

Video
01:15:39

Data Structures Contd

Video
01:17:49

Lists

Video
01:24:32

Tuples & Sets

Video
01:24:31

Dictionaries

Video
01:16:07

Strings as DS

Video
01:21:28

Loops Intro and For Loop

Video
01:10:32

For Loops Contd

Video
01:11:31

For Loop Practice

Video
00:57:01

For Loop Topics

Video
01:17:14

While Loop

Video
00:55:26

Functions

Video
01:14:10

Functions Conted

Video
01:15:26

Functions Contd2.

Video
01:17:28

Functions Complted

Video
01:05:35

OOPs

Video
01:08:42

OOPs Contd.

Video
01:08:34

OOPs Atm Example

Video
01:07:53

OOPs Example Contd

Video
00:59:16

OOPs Principles

Video
01:15:56

OOPs Principles Compltd

Video
00:48:22

Class , Static Methods & Pyfiles as Modules Contd

Video
01:08:01

File Handling

Video
01:18:27

File Handling & Exception Handling

Video
01:15:23

MultiThreading & MultiProcessing

Video
00:43:12

Python Files as Scripts, Modules & Libraries

Video
00:30:15

DS-DA - Libraries

Numpy Intro.

Video
01:07:45

Numpy Contd

Video
01:02:54

Numpy methods & Pandas Intro

Video
01:08:31

Pandas Contd

Video
01:09:28

Pandas Contd2

Video
01:14:42

Pandas Contd3

Video
01:11:39

Pandas Compltd

Video
01:21:25

Machine Learning

Introduction

Video
00:35:30

Data Preparation

Video
01:12:50

1.1 Data Prep Contd

Video
01:16:39

1.2 Data Prep Compltd & Code

Video
00:55:43

Predictions & Model Deployment

Video
01:57:59

Model Deployment Contd.

Video
01:17:20

Supervised Learning

Fundamentals of Classification

Video
00:48:59

Classification (Logistic Regression & K Nearest Neighbors)

Video
01:12:15

Classification(SVM)

Video
01:05:42

Classification (Naive Bayes & Decision Tree Intro)

Video
01:17:44

Classification (Decision Trees Completed)

Video
01:15:24

Classification Ensembles (Random Forest & Xgboost)

Video
01:26:15

Classification (Algorithms Code & Classification Model Evaluation)

Video
01:15:24

Classification (Imbalanced Data Handling & Hyp Parameter Tuning)

Video
01:14:31

Classification Project

Video
00:31:40

Regression (ML Algorithms & Linear Regression)

Video
01:13:32

Regression Algos (Linear, Poly, Lasso & Ridge)

Video
01:01:16

Regression (LR Code & Regression Model Evaluation)

Video
01:04:48

Other Regression Codes & Project

Video
01:05:21

Un Supervised Learning

Clustering & Dimensionality Reduction Intro

Video
00:21:09

Algorithms & Code

Video
01:15:04

Dimensionality Reduction & PCA

Video
00:27:40

Deep Learning

Introduction

Video
01:06:21

Neural Network Working and Types

Video
01:14:17

ANN Code Overview

Video
00:19:48

Images Data

Video
00:41:51

Images Data Study Using Python Libraries

Video
00:28:18

CNN Overview

Video
00:57:06

CNN Code

Video
01:41:52

CNN Compltd

Video
01:03:21

Object Detection Intro

Video
00:44:14

Opencv Haar Cascade Face and Eyes Detection and Custom Object Detection Data Preparation

Video
01:02:37

YOLO

Video
00:51:13

YOLO Code

Video
00:40:02

NLP

NLP Introduction

Video
01:00:13

Text Classification

Video
01:04:27

Sequence Based Modeling

Video
00:53:51

Course Instructor

tutor image

Social Prachar

13 Courses   •   348 Students