dots bg

Data Science - Self Study

Course Instructor Social Prachar

₹18000.00 ₹45000.00 60% OFF

dots bg

Course Overview

Schedule of Classes

Course Curriculum

1 Subject

Data Science - Self Study

80 Learning Materials

Python

Python - Introduction

Video
1:18:14

Installations

Video
1:1:6

Programming Example

Video
59:58

Basics of Python

Video
1:21:37

Basics Contd

Video
1:14:3

Basic Conted - 01

Video
1:21:58

Basics Cmplted

Video
1:8:46

Conditions - 01

Video
1:19:39

Conditions Contd

Video
1:3:14

Conditions Compltd

Video
24:54

Data Structures Intro

Video
1:15:39

Data Structures Contd

Video
1:17:49

Lists

Video
1:24:32

Tuples & Sets

Video
1:24:31

Dictionaries

Video
1:16:7

Strings as DS

Video
1:21:28

Loops Intro and For Loop

Video
1:10:32

For Loops Contd

Video
1:11:31

For Loop Practice

Video
57:1

For Loop Topics

Video
1:17:14

While Loop

Video
55:26

Functions

Video
1:14:10

Functions Conted

Video
1:15:26

Functions Contd2.

Video
1:17:28

Functions Complted

Video
1:5:35

OOPs

Video
1:8:42

OOPs Contd.

Video
1:8:34

OOPs Atm Example

Video
1:7:53

OOPs Example Contd

Video
59:16

OOPs Principles

Video
1:15:56

OOPs Principles Compltd

Video
48:22

Class , Static Methods & Pyfiles as Modules Contd

Video
1:8:1

File Handling

Video
1:18:27

File Handling & Exception Handling

Video
1:15:23

MultiThreading & MultiProcessing

Video
43:12

Python Files as Scripts, Modules & Libraries

Video
30:15

DS-DA - Libraries

Numpy Intro.

Video
1:7:45

Numpy Contd

Video
1:2:54

Numpy methods & Pandas Intro

Video
1:8:31

Pandas Contd

Video
1:9:28

Pandas Contd2

Video
1:14:42

Pandas Contd3

Video
1:11:39

Pandas Compltd

Video
1:21:25

Machine Learning

Introduction

Video
35:30

Data Preparation

Video
1:12:50

1.1 Data Prep Contd

Video
1:16:39

1.2 Data Prep Compltd & Code

Video
55:43

Predictions & Model Deployment

Video
1:57:59

Model Deployment Contd.

Video
1:17:20

Supervised Learning

Fundamentals of Classification

Video
48:59

Classification (Logistic Regression & K Nearest Neighbors)

Video
1:12:15

Classification(SVM)

Video
1:5:42

Classification (Naive Bayes & Decision Tree Intro)

Video
1:17:44

Classification (Decision Trees Completed)

Video
1:15:24

Classification Ensembles (Random Forest & Xgboost)

Video
1:26:15

Classification (Algorithms Code & Classification Model Evaluation)

Video
1:15:24

Classification (Imbalanced Data Handling & Hyp Parameter Tuning)

Video
1:14:31

Classification Project

Video
31:40

Regression (ML Algorithms & Linear Regression)

Video
1:13:32

Regression Algos (Linear, Poly, Lasso & Ridge)

Video
1:1:16

Regression (LR Code & Regression Model Evaluation)

Video
1:4:48

Other Regression Codes & Project

Video
1:5:21

Un Supervised Learning

Clustering & Dimensionality Reduction Intro

Video
21:9

Algorithms & Code

Video
1:15:4

Dimensionality Reduction & PCA

Video
27:40

Deep Learning

Introduction

Video
1:6:21

Neural Network Working and Types

Video
1:14:17

ANN Code Overview

Video
19:48

Images Data

Video
41:51

Images Data Study Using Python Libraries

Video
28:18

CNN Overview

Video
57:6

CNN Code

Video
1:41:52

CNN Compltd

Video
1:3:21

Object Detection Intro

Video
44:14

Opencv Haar Cascade Face and Eyes Detection and Custom Object Detection Data Preparation

Video
1:2:37

YOLO

Video
51:13

YOLO Code

Video
40:2

NLP

NLP Introduction

Video
1:013

Text Classification

Video
1:4:27

Sequence Based Modeling

Video
53:51

Course Instructor

tutor image

Social Prachar

13 Courses   •   627 Students